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Abstract 
Diabetes mellitus (DM) often causes chronic kidney damage despite best medical practices. Diabetic kidney disease (DKD) 
arises from a complex interaction of factors within the kidney and the whole body. Targeting specific disease-causing agents 
using drugs has not been effective in treating DKD. However, stem cell therapies offer a promising alternative by addressing 
multiple disease pathways and promoting kidney regeneration. Mesenchymal stem cells (MSCs) offer great promise due to 
their superior accessibility ratio from adult tissues and remarkable modes of action, such as the production of paracrine anti-
inflammatory and cytoprotective substances. This review critically evaluates the development of MSC treatment for DKD 
as it moves closer to clinical application. Results from animal models suggest that systemic MSC infusion may positively 
impact DKD progression. However, few registered and completed clinical trials exist, and whether the treatments are effective 
in humans is still being determined. Significant knowledge gaps and research opportunities exist, including establishing the 
ideal source, dose, and timing of MSC delivery, better understanding of in vivo mechanisms, and developing quantitative 
indicators to obtain a more significant therapeutic response. This paper reviews recent literature on using MSCs in preclini-
cal and clinical trials in DKD. Potent biomarkers related to DKD are also highlighted, which may help better understand 
MSCs’ action in this disease progression.

Key messages 
•	 Mesenchymal stem cells have anti-inflammatory and paracrine effects in diabetic kidney disease.
•	 Mesenchymal stem cells alleviate in animal models having diabetic kidney disease.
•	 Mesenchymal stem cells possess promise for the treatment of diabetic kidney disease.
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Introduction

Diabetes and chronic kidney disease (CKD) patients com-
prise a distinct subpopulation of people with diabetic kidney 
disease (DKD), which can be recognized by amplified excre-
tion of albumin protein in the urine or lesser glomerular fil-
tration rate (GFR), or maybe both [1]. It ultimately disturbs 
the normal process of eliminating unwanted products and 
fluids from the human body and intrudes on kidney func-
tion. The International Diabetes Federation (IDF) claims that 
40% of patients with diabetes experience kidney failure in 
its most advanced stages. Additionally, diabetes mellitus and 
hypertension are critical indicators or sometimes frame 80% 
of end-stage renal failure cases (ESRF) [2].
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Clinical signs and symptoms

Albuminuria, or the removal of albumin in the urine, 
increased weight and inflammation of the legs and ankles; 
repeated nighttime urination, morning dizziness and ill-
ness, and anemia; and raised blood pressure are all indi-
cations of DKD in humans [3]. Type 2 diabetes mellitus 
(T2DM) patients are 40% more likely than type 1 diabetes 
patients to suffer DKD. DKD is the main factor causing 
end-stage renal disease, i.e., CKD and ESRD [4]. The une-
ven increase in low- to middle-socioeconomic nations and 
an underappreciated global illness burden is leading to a 
consistent rise in the prevalence of DKD [5]. Additionally, 
DKD is linked to a high death rate. Diabetes patients with 
kidney illness had a 31.1% higher mortality risk, which 
rose with the severity of the condition [6, 7]. Early DKD 
patients also had a greater mortality risk [8]. DKD also 
places a significant financial and societal strain [9]. DKD 
is often detected much later in a person until it manifests 
significant difficulties [10–12]. Lack of information and 
inconsistent screening are the main barriers to early diag-
nosis [13, 14]. Early diagnosis is a practical way to lessen 
the financial burden of DKD.

DKD risk factors

Escalated albuminuria

Kidney disease progression is caused by the high 
emission of albumin in the urine. Microalbuminuria 
(30–300 mg g−1) or macroalbuminuria (> 300 mg g−1) in 
urine is described by increased emission of albumin creati-
nine [15]. Both micro- and macroalbuminuria are markers 
of kidney function impairment and are commonly used as 
diagnostic indicators of renal dysfunction. The excessive 
secretion of albumin in the urine and its relation to the 
glomerulus is depicted in Fig. 1.

Hyperglycemia

Another primary and independent risk factor for DKD is 
hyperglycemia [16]. The alteration in the antioxidant system 
and increased production of advanced glycation end prod-
ucts (AGE) results in continuous deterioration of renal capa-
bilities. The pathophysiology of DKD is similarly thought 
to involve stimulation of the polyol pathway led by hyper-
glycemia flux and several linked microvascular problems 

Fig. 1   Diabetic kidney disease, kidney disease influenced by diabe-
tes. Comprehensive anatomy of the glomerulus elucidates that in a 
healthy glomerulus, the capillary keeps the protein molecules in the 
blood, and routine urine will be passed out from the body. Mean-

while, in an unhealthy glomerulus, the glomerulus capillary wall is 
damaged, which results in the spilling of protein molecules into the 
urine. The unhealthy glomerulus will lead to escalated emission of 
albumin protein in the urine, causing DKD



Journal of Molecular Medicine	

[17]. Glycated hemoglobin (HbA1c) variation is associated 
with patients with diabetes (T1DM and T2DM). The onset 
and headway of diabetic nephropathy rely significantly on 
HbA1c [18]. An Italian multi-site trial, Renal Insufficiency 
and Cardiovascular Events (RIACE) reported a related find-
ing [19]. In T2DM patients, forceful glucose control showed 
positive effects in postponing the development and stopping 
the progression of albuminuria [20, 21].

Hypertension

A substantial risk factor for DKD is hypertension. A recent 
meta-analysis revealed that hypertension is ominously linked 
to the onset of diabetic nephropathy [21, 22]. Patients with 
hypertension are more likely to develop diabetic nephropa-
thy, 95% confidence interval (CI, 13.1–2.14), than non-
hypertensive patients [22]. A study from China based on a 
population perspective found that controlling hypertension 
can lower the risk of end-stage renal failure by 23%, further 
supporting this notion [23].

Dyslipidemia

Dyslipidemia in diabetic patients is marked by a reduction in 
high-density lipoprotein and a rise in triglycerides and low-
density lipoprotein [24]. Through the death of specialized 
epithelial cells (i.e., cells covering the surface of glomerular 
capillaries known as podocytes), clearance of dead adipocytes 
(macrophage infiltration), and increased extracellular matrix 
formation, dyslipidemia contributes to the progression of 
DKD [25]. The level of dyslipidemia may increase in DKD 
patients due to hyperglycemia and insulin resistance [26].

Obesity

Obesity and diabetes-induced kidney disease (DKD) appear 
to be strongly correlated, according to the evidence [27]. 
However, the molecular mechanism of obesity causing DKD 
is not very well-defined; it is assumed that this risk factor 
causes proteinuria and glomerulonephritis (i.e., glomerular 
damage and renal hypertrophy) [28, 29].

Smoking

It is characterized as a discrete key player to enhance the 
progression of DKD. Smoking plays a multifaceted patho-
genic role in the expansion of DKD, which consists of oxida-
tive stress, increased fats, cholesterol, triglycerides, protein 
glycation, accretion of AGEs, and protein loss into the urine 
(glomerulosclerosis) [30, 31]. It was discovered that smok-
ing increased the possibility of diabetic nephropathy. This 
was further supported by a recent meta-analysis that found 
that T2DM patients who smoke have a higher chance of 

developing diabetic nephropathy. It was obtained by combin-
ing the data from nine group studies [32]. Furthermore, due 
to the close correlation between DKD and CVDs, patients 
with DKD have higher mortality rates [33]. Death and dis-
ease associated with DKD can have a significant impact on 
a person’s quality of life and increase the overall healthcare 
costs. Expenses of care for CKD patients are substantial, 
and these costs rise further in the manifestation of CVDs. 
Interventions that reduce or stop renal disease can benefit 
health care regimens targeting the condition [34]. Hence, it 
is important to appropriately treat comorbidities, including 
hypertension, dyslipidemia, and vascular dysfunction when 
managing DKD.

Epidemiology

A substantial percentage of people with diabetes have DKD 
development. Since 2000, there has been an increase in the 
prevalence of diabetes; as of 2019, there were 463 million 
individuals with the disease worldwide, or 9.3% of people 
aged 20 to 79. By 2045, these figures are projected to be 
over 700 million and 10.9%, respectively [35]. Analyzing 
an average follow-up time of 24 years, the Diabetes Control 
and Complications Trial and the Epidemiology of Diabetes 
Interventions and Complications trial among T1DM subjects 
found that albuminuria developed in 23% of those receiving 
demanding treatment and 36% of those receiving conserva-
tive treatment [35]. The median line (15 years) of treatment 
and health condition update was done by the United King-
dom Prospective Diabetes Study. They found that 38% of 
T2DM subjects had developed albuminuria, and 28% had 
renal impairment [36]. According to regional research, the 
prevalence of CKD among people with diabetes ranges from 
less than 30% to beyond 80% [37]. Over the past 10 years, 
the prevalence of DKD in diabetic patients remained stable 
[38, 39]. However, the rising global trajectory of diabetes 
prevalence puts an increasing number of people in danger 
[40]. Globally, DKD is a significant contributor to end-stage 
renal disease (ESRD) in different countries, holding a record 
for 47% of new cases in the United States (US) and 60% in 
some nations like Malaysia and Singapore [41].

According to various cross-sectional studies conducted 
in the USA, there was no real revolution in the preva-
lence of DKD from 1988 to 1994 (28.4%) and 2009–2014 
(26.2%). While the prevalence of albuminuria dramatically 
decreased in the USA throughout that time (from 20.8 to 
15.9%), the rate of renal dysfunction described as a predict-
able eGFR < 60 ml min−1 1.73 m2 notably rose from 9.2 
to 14.1% [39]. The IDF calculated 8.4% of deaths with all 
causes in persons aged 20 to 79, or about 5.1 million, using 
statistics from the World Health Organization (WHO). A 
sensitivity analysis was conducted to adjust the relative 
risks of DM by 20%. The results of this analysis indicated 
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that the estimate of DM-attributable mortality ranges from 
5.1 to 10.1% of total mortality, with a range of 3.3 million 
to 6.6 million deaths globally. Additionally, the study also 
estimates that 1 in 12 global all-cause deaths is attributable 
to DM in adults [42].

Pathophysiology of DKD

Great glycemic control is related to better kidney capabil-
ity and more limited DKD advancement in diabetics [43]. 
Sustained hyperglycemia, or high blood sugar levels, can 
lead to a variety of detrimental effects on the kidneys. The 
formation of AGEs and oxidative injury can cause damage 
to the structure and function of the kidneys. Hypoxia, or 
lack of oxygen, can also occur as a result of poor blood 
flow to the kidneys. Metabolic and energetic disturbances 
can further contribute to kidney damage. Additionally, the 
overactivation of the renin-angiotensin-aldosterone system 
(RAAS) can cause hypertension and kidney damage. The 
production of inflammatory and fibrotic factors, such as 
transforming growth factor-beta (TGF-β), can also lead to 
the development of renal fibrosis, or scarring of the kidneys 
[44–46]. High blood glucose causes persistent metabolic 
and hemodynamic changes that modify signal transduc-
tion pathways, cytokines, chemokines, and growth factors. 
Furthermore, sustained hyperglycemia can lead to a number 
of negative effects on the body, including endothelial cell 
apoptosis. This is thought to occur through the activation of 
the nuclear factor kappa-light-chain-enhancer of activated 
B cells (NF-kB) and c-jun pathways. These pathways are 
involved in the regulation of inflammation and cell death, 
and their activation in response to hyperglycemia can lead 
to damage and dysfunction of the blood vessels in the kid-
neys. Understanding how metabolic pathways are altered in 
sustained hyperglycemia, or elevated blood sugar, is crucial 
for developing effective therapies for DKD [46].

In the early phases of DKD, persistent hyperglycemia can 
lead to a number of negative effects on the renal proximal 
tubule cells, which are responsible for reabsorbing glucose, 
amino acids, electrolytes, and other substances from the pri-
mary urine back into the bloodstream. High blood sugar lev-
els can cause damage to these cells through various mecha-
nisms, including the generation of reactive oxygen species 
(ROS), oxidative injury, and increased production of TGF-β. 
As a result of these demonstrations, all these effects lead to 
G1 cell cycle arrest of the proximal tubule cell and a senes-
cent phenotype, which promotes interstitial inflammation and 
fibrosis [47, 48]. Vascular endothelial nitric oxide synthase 
(eNOS) aids in releasing the nitric oxide (NO). In the renal 
vasculature, NO is produced by the endothelial cells lining 
the blood vessels and acts as a vasodilator, meaning it relaxes 
the smooth muscle cells in the blood vessels and causes them 

to dilate. During DKD, a reduction in the synthesis of nitric 
oxide happens. This leads to lower levels of NO in the blood 
vessels of the kidneys, making them more sensitive to vaso-
constriction. This vasoconstriction is caused by other factors 
such as the peptide hormone endothelin-1, which can further 
contribute to the progression of DKD [49].

Aberrations such as mitochondrial dysfunction, apop-
tosis, breakdown of autophagy, and activation of intracel-
lular signal transduction pathways, such as protein kinase 
C (PKC) and mitogen-associated protein kinase (MAPK), 
which also interact with NF-κB in the renal tubules, have 
been observed. This incorporates support of inflammatory 
cytokines and chemokines (interleukins: IL-1, 6, 18), tumor 
necrosis factor (TNF-α), monocyte chemoattractant protein 
(MCP)-1, macrophage colony-stimulating factor (CSF-1), 
and macrophage inflammatory factor (MIF). Large-scale 
manufacturing of cytokines that encourage fibrosis, like 
TGF-β and CTGF (connective tissue growth factor), has 
additionally been connected to DKD [50]. The concise 
pathophysiology of DKD is illustrated in Fig. 2. Diabetes-
related hemodynamic changes may increase the possibility 
of acute kidney damage in DKD-sick people [51]. Many 
studies have shown that insulin resistance is a different 
potential risk for acute kidney injury. As a result, it is criti-
cal to monitor the beginnings of renal damage in patients 
with diabetes, as this disorder can quicken the progression 
of CKD. DKD is also caused by a crucial metabolic trans-
formation in the body, which causes damage to body parts 
other than the kidney, e.g., the liver, skeletal system, arter-
ies, nerves, and body fat. The damage of these organs can 
lead to the list of comorbidities which are associated with 
diabetes. The significance of epigenetic modifications in 
the early phases of DKD has been underlined by the latest 
researches, which may impact transcriptional activity from 
different pathways, thereby modifying the disease [52].

Treatment

DKD is a common complication of diabetes and can lead 
to abnormal levels of blood pressure, lipids, and glucose, 
which can further damage the kidneys and increase the risk 
of cardiovascular disease. It is important for individuals with 
diabetes to closely monitor and manage their blood sugar 
levels and to work with their healthcare provider to manage 
any other risk factors [53–57]. A lifestyle change is crucial 
for the diagnosis, control, and therapy of DM and related 
consequences [58].

Controlling level of blood glucose

It is estimated that about 20% of people with DM developed 
DKD irrespective of well-controlled blood glucose levels 
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[59]. Certain clinical studies have shown that intensive blood 
glucose control can delay the progression of diabetic kidney 
disease and protect renal function such as development of 
microalbuminuria and reduced eGFR in diabetic patients 
[60]. To gentle the progression of DKD, initial DM patients 
must toughen glycemic control to eliminate the quantity of 
HbA1c to 7.0% or less, according to regulations from the 
American Diabetes Association (ADA)/European Associa-
tion for the Study of Diabetes (EASD) [61] and Kidney Dis-
ease Outcomes Quality Initiative (KDOQI) [60]. However, 
some studies have found that HbA1c levels below 6.0% or 
above 9.0% are associated with an increased risk of death 
[62, 63]. Therefore, current international guidelines rec-
ommend an individualized approach to treatment intensity 

based on the patient’s characteristics and risk factors. This 
means that while the target HbA1c of 7% is a general recom-
mendation, the individualized approach to treatment inten-
sity will be taken into consideration which means the target 
may vary for different patients [60].

The significance of blood glucose control cannot be over-
stated. It directly influences the effectiveness of various 
therapeutic approaches, including stem cell therapies such 
as MSC-based treatments for diabetes. An illustrative exam-
ple of this is highlighted in the meta-analysis conducted in 
2016 [64]. Their study underscores the critical role of glu-
cose control and its direct impact on the outcomes of stem 
cell therapy for diabetes. Notably, the study raises a piv-
otal consideration: the potential challenges associated with 

Fig. 2   Diabetic kidney disease 
is characterized by metabolic 
and hemodynamic aberra-
tions, which interact between 
several ROS-related pathways. 
In diabetes, the regulation and 
activation of particular growth 
or transcription factors are influ-
enced by metabolic abnormali-
ties, hemodynamic mediators, 
and the creation of ROS. The 
magnitudes of the activation 
or inhibition at the molecular 
or metabolic level give rise to 
the histological (structural and 
functional) changes causing 
diabetic kidney disease. IL, 
interleukins; ECM, extracel-
lular matrix; TGF, transforming 
growth factor; AGEs, advanced 
glycation end products; GFR, 
glomerulus filtration rate; 
CTGF, connective tissue growth 
factor; MMP, matrix metal-
loproteinases; ROS, reactive 
oxygen species
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MSC-based treatment in the presence of diabetic ketoaci-
dosis (DKA) if not managed correctly. The data from their 
meta-analysis suggests that individuals with DKA at the time 
of diagnosis may present unique challenges for stem cell 
therapy. One possible explanation for this suboptimal clini-
cal response among DKA patients is the presence of very 
low β-cell reserve. Therefore, the success of MSC-based 
treatments for diabetes is intricately linked to meticulous 
glucose control and the avoidance of complications associ-
ated with DKA. These findings reiterate the importance of 
precise glucose management and patient selection within 
the context of stem cell therapy for diabetes, reinforcing the 
significance of individualized care.

Controlling body weight

Excessive body weight leads to insulin resistance, systemic 
inflammation, and metabolic dysregulation which in turn 
establish the detrimental effects on renal function. Thus, 
successful weight management, attained through lifestyle 
adjustments, dietary regulation, and routine physical exer-
cise, serves as a crucial means not only to enhance glycemic 
control but also to diminish the risks and progression of 
DKD. As we delve into the multifaceted approach of DKD 
management, it is important to consider the innovative 
approaches such as the therapeutic potential of mesenchy-
mal stem cells (MSCs) in the context of obesity, diabetes, 
and its related complications. In numerous investigations, 
the administration of human MSCs or MSC-derived con-
ditioned media to diet-induced obese (DIO) mice resulted 
in a notable reduction in both body weight and fat mass. 
What is more, MSC therapy demonstrated a significant 
improvement in the metabolic parameters of obese mice, 
including enhanced insulin sensitivity and reduced levels of 
blood glucose and triglycerides [65]. Consequently, multiple 
MSC administrations shielded obese mice from the onset of 
metabolic syndromes linked to obesity, including diabetes, 
fatty liver disease, and cardiovascular impairment [66]. In 
another study, intravenous administration of human adipose-
derived MSCs was employed in high-fat-diet-induced obese 
mice. This intervention led to reduced adipose tissue weight, 
adipocyte size, and fat mass, along with improved meta-
bolic profiles. Additionally, it increased energy expenditure, 
upregulated metabolic genes, and induced a shift towards 
anti-inflammatory M2 macrophages in adipose tissue [67].

Blood pressure control

Strict blood pressure supervision in DKD patients can sub-
stantially lower albuminuria, delay loss of kidney function, 
and minimize the risks of heart disease [68]. The Ameri-
can Diabetes Association (ADA) recommends that peo-
ple with diabetes aim to keep their blood pressure under 

140/90 mmHg (1 mmHg = 0.133 kPa). For patients with 
cardiovascular disease or kidney failure, a lower blood 
pressure target of 130/80  mmHg is recommended. All 
other patients control their blood pressure at a target of 
130/80 mmHg [69]. The Action to Control Cardiovascu-
lar Risk in Diabetes (ACCORD) blood pressure trial was a 
large randomized controlled trial that recruited participants 
with type 2 diabetes and randomized them to an intensive 
blood pressure therapy group or a standard blood pres-
sure therapy group. The intensive therapy group aimed to 
achieve a systolic blood pressure of less than 120 mmHg, 
while the standard therapy group aimed to achieve a systolic 
blood pressure of less than 140 mmHg. The trial found that 
intensive blood pressure therapy reduced the incidence of 
cardiovascular events and overall mortality in the inten-
sive therapy group compared to the standard therapy group. 
These findings support the use of more aggressive blood 
pressure targets in patients with type 2 diabetes to reduce 
the risk of cardiovascular disease [70–72].

Angiotensin-converting enzyme inhibitors (ACEIs) and 
angiotensin II receptor blockers (ARBs) are commonly used 
as first-choice remedies for the treatment of DKD due to 
their ability to slow the progression of kidney damage and 
reduce the risk of cardiovascular disease. These drugs work 
by blocking the action of the angiotensin II hormone, which 
plays a key role in the development of kidney damage and 
hypertension. However, it is important to note that the com-
bination of an ACEI with an ARB is generally contraindi-
cated as it has been shown to increase the risk of kidney 
injury and hyperkalemia [73–75]. It has been reported that 
dual blockade of RAAS by using a combination of an ACEI 
and an ARB can lead to significant drops in blood pres-
sure and severe renal failure in animal models, such as in 
spontaneously hypertensive rats receiving a low-sodium diet. 
The RAAS is a complex hormonal system that plays a key 
role in regulating blood pressure, electrolyte balance, and 
fluid volume in the body. Blocking the RAAS with drugs 
like ACEIs and ARBs can lead to decreased blood pressure 
and improved kidney function, but when both pathways are 
blocked, it can lead to a decrease of blood pressure to dan-
gerous levels and severe renal failure [76].

According to the review outcomes of the ALTITUDE 
(Aliskiren Trial in Type 2 Diabetes That using Cardio-
Renal Endpoints NCT00549757), these appointed sub-
jects randomly in a controlled trial and evaluated the use 
of aliskiren as adjunctive therapy to an ACEI or ARB in 
individuals with T2DM, CKD, or CVDs. This trial eluci-
dated that aliskiren as an alternative treatment regimen did 
not further enhance renal performances; instead, it slowed 
the succession of albuminuria [77, 78]. Unfortunately, the 
trial was terminated early due to an increased risk of adverse 
events in the aliskiren group compared to the placebo group. 
Compared to existing treatments, ACEI and ARB combined 
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extended the major unfavorable responses, i.e., extreme kid-
ney injury and hyperkalemia, in a comparable study called 
VA-Nephron-D (Veterans Affairs Nephropathy in Diabetes, 
NCT00555217). From the start of the therapy to the 2-year 
follow-up, the danger of serious kidney harm was likewise 
immeasurably greater [74, 79]. When taking medication for 
ACEI/ARB, the urine albumin to creatinine ratio (UACR), 
creatinine clearance (CCr), potassium levels in the blood, 
and serum amount must all be surveilled.

Control of blood lipids

DKD patients are highly compromised with vascular prob-
lems, which may lead to hyperlipidemia. It can disrupt the 
barrier function of endothelial cells while also endangering 
blood supply [80, 81]. The KDOQI guidelines advise statin-
based treatment for lowering low-density lipoprotein cho-
lesterol (LDL-C) levels to lessen the risk of atherosclerotic 
complications in DKD patients. According to a meta-analysis 
of cholesterol treatment, the incidence of significant cardio-
vascular events decreased by 23% for each mmol/L drop in 
LDL-C [82]. The “2019 ESC Guidelines on diabetes, pre-
diabetes, and cardiovascular diseases development in col-
laboration with the EASD” recommend that in patients with 
arteriosclerotic cardiovascular diseases and diabetes or stage 
3–4 CKD, LDL-C should be controlled to a target of less than 
1.4 mmol/L (or 55 mg/dL) to reduce the risk of cardiovascu-
lar disease. This is a stricter target compared to the general 
population where the target is less than 2.5 mmol/L [83].

Low‑protein diet

The reductions in proteinuria (the amount of protein in 
the urine) have been shown to be a comprehensive index 
of decreased renal and cardiovascular event risk in T2DM 
patients [84]. Regardless, a low-protein eating plan for DKD 
has ignited some talk. The American Diabetes Association 
(ADA) recommends that people with DKD should aim to 
control their protein intake by consuming about 0.8 g/kg of 
body weight per day (0.8 g kg−1 d−1). This is in contrast to 
higher levels of protein intake, which have been found to 
accelerate the decline of kidney function as measured by 
the glomerular filtration rate. This is because higher levels 
of protein intake can cause an increase in metabolic waste 
products that the kidneys must filter, which can lead to fur-
ther damage [85]. Ingesting less protein, then again, would 
gainfully affect glucose, GFR power, or cardiovascular 
issues [86].

Use of new hypoglycemic drugs

RAAS (ACE inhibitors and ARBs) and metformin (anti-
diabetic medication to control the glucose levels) can help 

to reduce the workload on the kidneys. These medications 
may be used together or as monotherapy to help slow the 
progression of DKD and protect kidney function [87, 88]. 
The development of DKD is undeniable and may require an 
urgent need for a novel treatment approach [89]. The patho-
logical and molecular mechanisms of DKD are under study 
to develop more target based-drugs [90–93]. Three novel 
hypoglycemic remedies, including dipeptidyl peptidase-4 
(DPP-4) inhibitors, sodium-glucose cotransporter-2 inhibi-
tors (SGLT2i) receptor agonists, and glucagon-like peptide 
1 receptor agonists (GLP1-RA), show comprehensive renal 
protective effects [94]. Clinical trials have shown promising 
results, particularly for hypoglycemic drugs/inhibitors, such 
as SGLT2 inhibitors, GLP-1 agonists, and DPP-4 inhibi-
tors. In an animal or human clinical assessment, solutions 
like protein kinase C inhibitors, AGE inhibitors, endothelin 
receptors, Rho kinase, and TGF-β have shown promising 
positive effects and bring hope for the treatment of DKD. 
Other novel medicines that are still being researched include 
CCX140b [94], PF-00489791 [95], and NOX-E36 [96]. 
Moreover, current preclinical studies are investigating the 
patterns of multiple novel targets, including adiponectin and 
its receptors [97], NADPH oxidase [98], histone deacetylase 
[99, 100], and microRNA [101, 102] in DKD.

Currently, most drugs are being tested at different degrees 
of advancement. To predict DKD patients, there is a dire 
need to conduct extensive studies that utilize larger cohorts 
and randomly controlled trials. The pathophysiology of 
DKD is not yet fully comprehended, and there are only a 
few treatments that target signaling molecules or pathways. 
Moreover, while certain drugs have demonstrated efficacy 
in preclinical studies, they either do not advance to clinical 
trials or lack sufficient clinical trials to establish their effec-
tiveness. Despite some drugs showing promising results for 
DKD, their safety profiles remain insufficient. As a result, 
we have a long way to go in treating DKD given these chal-
lenges. Traditional methods for treating DKD, like conven-
tionally prescribed medicines, physiotherapy, and dietary 
treatment, are not always fruitful. To lessen the significant 
patient count and medical services load, innovative therapy 
models like cellular therapy are required. These techniques 
may hamper the development of DKD and contribute to 
repairing the defected organs without causing any severe 
side effects [74]. Mesenchymal stem cells (MSCs), i.e., adult 
stem cell treatment, are possibly the most favorable cellular 
therapy in the field of regenerative medicine. As they may 
be used systemically or locally to treat many diseases, due 
to their self-renewal and differentiation potential.

Mesenchymal stem cell therapy

The capacity to self-renew and give rise to cells from differ-
ent lineages are two good qualities of stem cells. Interaction 
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of MSCs with numerous human illnesses like diabetes 
mellitus, malignant growth (cancer), and neurodegenera-
tive diseases like Parkinson’s and Alzheimer’s has been 
widely investigated. Stem cells can be classified based on 
their origin; embryonic stem cells, adult stem cells, and 
induced pluripotent stem cells. Adult stem cells are undif-
ferentiated cells found in various tissues in the body that 
have the capacity to differentiate into multiple cell types of 
that specific tissue or organ. These stem cells incorporate 
MSCs, HSCs (hematopoietic stem cells), satellite cells, and 
MuSCs (muscle stem cells). Traditionally, MSCs were first 
isolated from bone marrow (BM-MSCs) and spleen from 
guinea pigs [103].

MSCs may generally be observed in the bone marrow, 
birth canal, umbilical cord blood, visceral fat, brain tissues, 
and several other tissues. Research has highlighted that 
MSCs are highly variable, exhibiting significant hetero-
geneity among various sources and even within the same 
source, which underscores the need for thorough charac-
terization and quality control measures. Considering this, 
the International Society for Cellular Therapy (ISCT) 
made specific standards for all MSCs separated by various 
sources. In 2019, the ISCT introduced updated guidelines 
that aim to address the inherent heterogeneity of mesen-
chymal stem cells (MSCs). These guidelines encompass a 
variety of analytical methods designed to illustrate various 
functional properties of MSCs. These properties include the 
secretion of trophic factors, the modulation of immune cells, 
and their role in angiogenesis. The ISCT MSC committee 
has put forth recommendations for research studies in this 
field. These recommendations emphasize the importance 
of providing comprehensive information in the following 
key areas (i) tissue source origin (to highlight the tissue-
specific properties associated with these cells), (ii) stemness 
properties (described by both in vitro and in vivo data), (iii) 
functional assays (employ a robust set of functional assays 
to assess the properties of MSCs in relation to their intended 
therapeutic mechanisms). Furthermore, evaluating MSC-
based products involves a set of fundamental assays, which 
encompass donor screening; viability assessments; purity 
tests (including assessments for residual contaminants and 
pyrogenic/endotoxin presence); safety evaluations (such as 
bacterial, fungal, mycoplasma, viral tests, and tumorigenic-
ity assays); identity assessments (including immunopheno-
typic profiles); and potency tests (comprising evaluations of 
multilineage differentiation, secretion profiles, CFU-f assays, 
and immunosuppressive properties). Incorporating these 
ISCT recommendations is crucial to ensuring that research 
in this field adheres to established standards and guidelines 
for the characterization and assessment of MSCs. These 
guidelines serve as a foundational reference point for evalu-
ating the quality and therapeutic potential of MSC-based 
interventions across various clinical applications [104]. As 

per the ISCT’s MSC criteria, genuine human MSCs should 
not display specific surface markers, which include HLA-
DR (MHC class II), CD19, CD14, CD34, CD45, and the 
B-cell antigen receptor’s alpha chain, CD79a. Conversely, 
MSCs are expected to exhibit the presence of positive sur-
face markers such as Thy-1 (CD90), 5′-nucleotidase (CD73), 
and endoglin (CD105). In an in vitro setting, MSCs should 
also showcase their ability to undergo differentiation into 
adipogenic, osteogenic, and chondrogenic lineages while 
manifesting the corresponding phenotypic characteristics 
[105]. Notwithstanding these attributes, MSCs additionally 
produce bioactive substances with immunoregulatory prop-
erties that advance tissue redesigning and fixing.

MSCs origin and expansion

The most common isolation sources of MSCs include 
adipose tissue, bone marrow, and umbilical cord. Certain 
in vitro and in vivo studies subjected their investigation 
routes on the regenerative potential of MSCs derived from 
aged and young donors. The majority of the investigations 
looked at how donor age correlated with MSC performance, 
which can range from 16 months to 90 years old. The studies 
showed that samples taken from older individuals exhibit 
lower MSC frequency, colony forming unit (CFU) efficiency, 
population doubling rate, osteogenic, and differentiation 
potential with increased risks of senescence. Senescence 
in MSCs can greatly impact their regenerative potential, 
reducing the ability to differentiate into specific cell types, to 
recruit macrophages, and to polarize them towards the anti-
inflammatory M2 phenotype. This highlights the importance 
of obtaining MSCs from young and healthy donors when 
cultivating them for therapeutic purposes, and to avoid the 
expansion of senescent cells [106].

Umbilical cord MSCs

In the recent decade, MSCs derived from umbilical cord 
(UC) blood, placenta, and amnion have presented numerous 
advantages over MSCs acquired from bone marrow and adi-
pose tissues (AT). A higher proliferation rate, increased pro-
liferation capacity, and longer lifespan in comparison to BM 
and AT-MSCs was observed. Previously conducted studies 
have also observed the expansion capacities of UC-MSCs as 
they can be proliferated over several passages (up to 16) with 
the retention of normal karyotype and avoiding the senes-
cence [107, 108]. Conversely, there are some shortcomings 
to successfully isolating and expanding UCB-MSCs; most 
notably the low frequency of MSC clones compared to UC, 
which has a rich supply of highly proliferative MSCs that are 
characterized by: compared to BM-MSCs, it has a uniform 
phenotype of adherent, spindle-shaped fibroblast-like cells 
in primary culture, a higher isolation yield (5 × 104–5 × 105 
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cells from 1 cm3 of UC tissue), a higher frequency of colony 
forming units (CFU)-F, and a shorter DT (24 h) [109].

Furthermore, the UC-MSCs secretome maybe comparable 
to the BM-MSCs secretome in its abundance of angiogenic 
factors. However, a previously conducted study points out that 
the isolation of MSCs, cell freezing conditions, and exposure of 
cells in cryoprotectants still needs further research [110]. Future 
research stating the pros and cons of using fetal tissue-derived 
MSCs requires large-scale investigations. Similarly, another 
study presented their findings regarding MSCs derived from 
young donors. They observed a faster proliferation rate, shorter 
doubling time, and efficiency in secreting cytokines for tissue 
regeneration in comparison to MSCs obtained from older or 
adult donors. The MSCs obtained from aged individuals pre-
sented increased chromosomal instability, employing genetic 
changes or mutations. Also, they were more susceptible to oxi-
dative stress, which can lead to damage to DNA, proteins, and 
other cellular components and can negatively impact the cells’ 
ability to function properly. The idea that aging affects cell pro-
liferation holds great importance. Cell division and proliferation 
capacity slows down as we age due to morphological and cel-
lular changes. The presence of aging-related markers like SA-β-
gal, P16, and p21 may also be the cause of the observed differ-
ences in proliferation between MSCs of varying ages [111]. It 
is important to remember that MSCs are a type of adult stem 
cell that can grow into many different kinds of cells, but where 
they origin from, affects the therapeutic purpose.

iPSC‑MSCs

The indefinite in vitro culture capability of induced pluri-
potent stem cells (iPSCs) and their potential to differenti-
ate into various cell types, including MSCs, make them a 
promising alternative to BM-MSCs for cell and gene therapy 
applications. The study [112] showed that iPSC-MSCs can 
be generated in clonal expansion and differentiated into vari-
ous cell types including osteoblasts, adipocytes, and chon-
drocytes, and promote tissue regeneration. This enhanced 
regenerative potential and decreased senescence of iPSC-
MSCs has been suggested to be due to higher telomerase 
activity compared to BM-MSCs, which may contribute to 
a decrease in the possibility of losing potency in the long-
term culture of MSCs. Additionally, the iPSC-MSCs have 
the advantage of being derived from autologous cells which 
makes them more suitable for therapies in personalized 
medicine. Also, future clinical trials would better unveil the 
actual results of this domain [113].

Molecular mechanisms of MSC‑based therapy 
for DKD

Experimental studies have shown promising results in using 
MSCs for relieving DKD, as outlined in Table 1, although 

the exact molecular mechanisms are still being investi-
gated. MSCs are multipotent cells that can differentiate 
into various cell types, including glomerular endothelial 
cells, when stimulated appropriately. The process of hom-
ing MSCs to damaged kidneys involves several molecules, 
including chemokine receptors, adhesion proteins, and the 
matrix metalloproteinases (MMPs) family, with stromal 
cell-derived factor-1 (SDF-1) and its receptor CXCR4 play-
ing a significant role in MSC migration to the site of kid-
ney damage [114]. In vitro studies have found that MSCs 
display a unique cellular behavior known as nonapoptotic 
membrane blebbing, which is similar to that of metastatic 
tumor cells. This behavior allows MSCs to migrate through 
the endothelium and overcome the basal barrier through 
the action of MMPs, particularly MMP2 and MT1-MMP. 
This allows MSCs to move through the tissue barriers and 
reach the damaged site [115]. However, despite the potential 
of MSCs to migrate to injured tissue and differentiate into 
functional replacement tissue, most studies have shown that 
only a small fraction of systemically administered cells can 
actually achieve this. Moreover, only a small percentage of 
transplanted cells can successfully differentiate into func-
tional tissue. Additionally, the administered cells are almost 
undetectable in other organs within 24 h, suggesting that 
their therapeutic effects may be mainly due to their parac-
rine activity rather than their differentiation potential [116]. 
Therefore, more research is needed to fully understand the 
molecular mechanisms underlying MSC-based therapy for 
DN and to improve the efficacy of this approach.

According to [117], many preclinical experimental mod-
els of DM and diabetic nephropathy have shown that exoge-
nously administered MSCs can modulate a variety of patho-
physiologic processes that contribute to the progressive renal 
injury and functional loss seen in DKD through paracrine-
mediated actions and cell-cell interactions. The evidence 
suggests that intravenous or other routes of MSC adminis-
tration can have beneficial effects on the kidneys in diabe-
tes models, both directly through the transfer of MSCs and 
their mediators to distinct renal compartments and indirectly 
through the reduction of glycemia and systemic inflamma-
tion [117]. Several mediators have been identified that play 
a crucial role in the direct and indirect paracrine effects 
of MSCs in DKD. One of these mediators is indoleamine 
2,3-dioxygenase (IDO), which is a potent immunomodula-
tory enzyme that can inhibit T-cell activation and prolifera-
tion. IDO can be induced in MSCs in response to inflamma-
tory stimuli, and its expression can lead to the production 
of immunosuppressive metabolites such as kynurenine and 
tryptophan, which can further inhibit immune cell function. 
Another mediator associated with the paracrine effects of 
MSCs in DKD is prostaglandin E2 (PGE2). PGE2 is a lipid 
mediator that has been shown to play a key role in the regu-
lation of T cell differentiation, particularly in the promotion 
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of regulatory T cell (Treg) differentiation. In addition to 
IDO and PGE2, interleukin-10 (IL-10) has also been iden-
tified as an important mediator of the paracrine effects of 
MSCs in DKD. IL-10 is an anti-inflammatory cytokine that 
is produced by macrophages in response to phagocytosis 
of apoptotic MSCs. IL-10 can promote tissue repair and 
regeneration by suppressing inflammation and promoting 
the differentiation of pro-repair immune cells [118]. The out-
comes received from DKD and DM models elucidated that 
MSCs can exert their potential when used as MSCs-derived 
conditioned medium (cocktail of cytokines, growth factors) 
or exosomes. The use of MSC-derived conditioned medium 
and exosomes offers advantages over MSCs, as it eliminates 
the need for isolation and expansion, reduces the risk of 
immune rejection, and allows for tailored administration of 
bioactive molecules [119].

MSCs have been found to have positive effects on the kid-
neys, leading to reductions in various negative processes such 
as glomerular size, podocyte apoptosis, glomerular matrix 
expansion/sclerosis, peritubular interstitial fibrosis, renal tubu-
lar epithelial cell death and dedifferentiation, tubulointersti-
tial fibrosis, and microvascular rarefaction. As a result, these 
effects are linked to decreased albuminuria (an indication of 
kidney damage) and stabilization of glomerular filtration rate 
(GFR), which is a key measure of kidney function [120].

MSCs‑derived exosomes and their role in DKD

MSCs can secret a large number of RNAs, lipids, and a 
variety of soluble factors packaged in extracellular vesicles 
(exosomes), as well as act through their paracrine function, 
The promising biological capacities of exosomes including 
biocompatibility, stability, low toxicity, and effectual trans-
port of molecular cargos, make them a suitable candidate 
in cellular therapy. Studies have shown that MSCs-Exos 
may have beneficial effects in the treatment of neurologi-
cal, respiratory, cartilage, renal, cardiac, liver diseases, bone 
regeneration, and cancer [143]. Compared to MSCs alone, 
MSCs-exosomes have demonstrated superior therapeutic 
and regenerative effects. Nearly, all DKD renal resident 
cells exhibit an autophagy disorder when diabetic [144]. 
Exosomes made from human urine stem cells, adipose 
tissue-derived MSCs, BM-MSCs, human umbilical cord 
MSCs, endometrial fluid, and amniotic fluid are helpful 
in the treatment of DKD [145]. The BM-MSCs-exosomes 
have potential therapeutic benefits in the treatment of DKD. 
Studies in animal models of DKD have shown that BM-
MSC-Exos can upregulate autophagy, which is an important 
cellular process that helps to remove damaged proteins and 
organelles. This upregulation of autophagy is thought to be 
mediated by the inhibition of the mTOR signaling pathway, 
which is known to be dysregulated in DKD. The inhibi-
tion of this pathway leads to improved renal function, as 

evidenced by decreased levels of SCr, blood urea nitrogen 
(BUN), and urine albumin (UALB) in DKD mice after mul-
tiple injections of BM-MSC-Exos. The BM-MSC-Exos also 
have an anti-fibrotic action, they can reduce renal fibrosis, 
which is a key contributor to the progression of DKD. Addi-
tionally, the injections were able to reduce mesangial dilata-
tion, a characteristic feature of diabetic kidney disease [146].

Recent research has shown that exosomes acquired from 
human urine stem cells can transport miR-16-5p, which 
is a small non-coding RNA molecule. This miRNA has 
displayed an important role in preventing podocyte apop-
tosis and inhibiting the expression of VEGF-A (vascular 
endothelial growth factor A), which is a key mediator of 
diabetic nephropathy. This inhibition of podocyte apoptosis 
shows potential in alleviating podocyte damage and slow-
ing the progression of DKD. Through its intricate inter-
actions at the molecular level, miR-16-5p emerges as a 
prospective facilitator for the restoration of podocyte quan-
tities and the reinforcement of renal resilience. Through 
the downregulation of VEGF-A expression, a crucial con-
tributor to the pathogenesis of diabetic nephropathy, miR-
16-5p actively contributes to the modulation of podocyte 
behavior and the alleviation of disease-related processes. 
This study provides a fresh perspective for which future 
investigations for DN may be established upon. However, 
being a pre-clinical study, further investigations into the 
finer mechanistic details are required in future studies. In 
addition to this, exosomes from human urine stem cells 
have been found to reduce inflammation, ameliorate podo-
cyte injury, and improve renal function in a mouse model 
of DKD [147]. Understanding how these molecules interact 
with target cells and how they influence the development of 
DKD could open new perspectives in the field of regenera-
tive medicine. Studies have shown that miR-146a-5p can 
target the TRAF6-STAT1 signaling pathway, which is a key 
mediator of inflammation in the kidney. By targeting this 
pathway, miR-146a-5p is able to promote the polarization 
of M2 macrophages, which are a type of immune cell that 
have anti-inflammatory properties. This promotes a shift 
from the pro-inflammatory M1 macrophage phenotype to 
the anti-inflammatory M2 phenotype. Additionally, this 
shift in macrophage polarization leads to a suppression of 
renal inflammation and the restoration of renal function 
in preclinical models of kidney disease, such as diabetic 
nephropathy [148]. By carrying miRNAs that target spe-
cific pathways or genes involved in the disease, exosomes 
derived from MSCs may be able to modulate the behavior 
of renal resident cells and improve renal function. While 
the potential therapeutic benefits of MSC-exosomes in 
DKD are promising, it is important to note that additional 
research is required to fully understand the mechanisms 
underlying their effects and to evaluate the MSCs and 
MSC-exosomes safety and efficacy in humans.
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Use of MSCs in DKD animal models

The use of stem cell treatment has gained considerable 
attention as a potential strategy for treating diseases or 
replacing/healing damaged tissues. Studies using strepto-
zotocin (STZ)-induced diabetes mellitus (DM) have shown 
that MSCs were successful in reversing hyperglycemia and 
preventing nephropathy in diabetic mice [105]. In the reno-
vascular hypertension model, MSC therapy significantly 
reduced the progressive increase in blood vessel tension by 
inhibiting the renin-angiotensin system (RAS) and reducing 
sympathetic hyperactivity. These are two processes associ-
ated with the progression of DKD [149]. In a trial model 
of induced atherosclerosis, mesenchymal stem cell therapy 
significantly reduced dyslipidemia (abnormal lipid levels 
in the blood) and chronic inflammation [150]. Administra-
tion of MSCs improved vascular reactivity in individuals 
with heart failure and demonstrated significant potential 
in addressing various issues related to vascular endothelial 
dysfunction. MSCs have the potential to address several 
comorbidities associated with and contributing to the pro-
gression of DKD. MSCs are widely used for these possibili-
ties because of their ability to modify risk factors associated 
with DKD. The most recent decade has seen a fast progres-
sion in cell treatment involving MSCs in clinical preliminar-
ies, as per specialist started enlistment information from the 
US National Institutes of Health (https://​clini​caltr​ials.​gov/). 
Throughout recent years, the amount of MSC-based clinical 
trials have multiplied. As of July 2021, 1014 preliminary 
clinical studies based on MSCs were listed as completed or 
ongoing on Clinical Trials.gov. Similarly, as of July 2022, 
we searched the keyword “mesenchymal stem cells” to find 
the comprehensive studies count. There were 1119 studies. 
After applying a filter of “not yet recruiting,” it showed 69 
studies; recruiting 215; enrolling by invitation 14; active not 
recruiting 53; suspended 16; terminated 37; withdrawn 38; 
unknown status 317; and COMPLETED “343” respectively. 
The filter of “mesenchymal stem cells” and “diabetic kid-
ney disease” showed eight studies count with a “recruiting 
status: 5 studies” and “unknown studies: 3.” As of March 
2023, with keywords “mesenchymal stem cells” and “dia-
betic kidney disease,” it showed eight studies count with a 
“recruiting status: 3 studies,” “enrolling by invitation: one 
study, and “unknown studies: 4.”

A table has been formulated to represent preclinical trials 
conducted in the past decade (Table 1). The primary focus 
was to provide a quick insight to any researcher venturing 
into the DKD human clinical trials. According to the litera-
ture review, the preclinical studies were conducted on animal 
models like rats, mice, tree shrews, and rhesus macaques 
with published results in DKD [151], and only one human 
clinical trial was predicated [152] till 2022. Recently, a new 
human clinical trial (NEPHROSTROM) has been conducted 

and published their results as the second human clinical trial 
[153] (Table 4). The estimated preclinical and clinical stud-
ies count over the past few years have also been depicted in 
Fig. 3, based on the category/source of MSCs, indicating 
a dire need for extended studies on humans to predict the 
effects of MSCs in this diabetes-induced complication, i.e., 
DKD. This pie chart displays a higher number of studies in 
the allogenic/syngeneic category, considering the immune-
privileged nature of MSCs in the renal lineage.

Furthermore, Li et al. [124] study findings elucidated that by 
preventing TGF-β-activated myofibroblast trans differentiation 
(MFT), silencing mesangial cell proliferation umpired by the 
P13/AKT and MAPK signal transduction pathways and driv-
ing up the matrix metalloproteinases (MMPs) concentrations 
in the mesangial cells, mouse UC-MSCs aids in the different 
roles. It tends to reduce kidney fibrosis in diabetic kidney disease 
or diabetic nephropathy. The role of mUC-MSCs presents an 
anti-fibrosis paracrine mechanism in DKD/DN. Rao et al. [142] 
proposed xenoplastic transplantation. Study results show that 
SHED (stem cells from human exfoliated deciduous teeth, which 
are obtained from young individuals to acquire high prolifera-
tion rate and accessibility) may become an impactful remedial 
resource to treat DKD, the ultimate and primary root of ESRD, 
as it impedes kidney damage in DKD/DN. SHED includes the 
prevention of hyperglycemia, lipidemia, raised protein amount 
in urine, extracellular matrix agglomeration, and a few segmen-
tal mesangial areas. While proposing UC-MSCs in xenoplastic 
transplantation [127] explained that MSCs were fine enough to 
reduce daily insulin intake, alleviation of HbA1c in DN sub-
jects was also monitored. The renal functions and pathogenic 
abnormalities were improved, and a reduction in expression of 
SGLT2 on renal tubular cells was predicted. The authors of this 
experiment revealed no discernible alteration in the immune sys-
tem of rhesus macaque DN models. In animal models of DKD, 
MSCs may decrease SCr, BUN, CCr, urine protein, and renal 
hypertrophy and increase body weight, glycemic control, and 
pancreatic islet activity to release insulin. MSCs can lessen renal 
fibrosis and the release of inflammatory mediators. Graft rejec-
tion was not reported in any of the animal experiments. Conceiv-
ably, molecular interpretations reveal that MSCs may lessen the 
inflammatory responses, including MCP-1 and TNF-α, as well 
as indications of renal fibrosis, namely Col-1, E-cadherin, and 
TGF-β. Conclusively, MSC therapy may 1 day be used to treat 
DKD. Recently studies have utilized allogeneic sources such as 
placenta and amniotic-derived MSCs to elucidate the impact on 
DKD. The results were promising. Although MSCs have shown 
promising results in animal models of DKD, there is still much 
to be learned about their mechanism of action, biodistribution, 
and novel and existing biomarkers and how they can be opti-
mized for clinical translation, effect on body weight or kidney-
to-body-weight ratios, and extended studies with the repeat dose 
of MSCs. By measuring the above-mentioned indicators, DKD 

https://clinicaltrials.gov/
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Fig. 3   Use of MSCs in pre-clinical and clinical studies of DKD

management can be done at the initial stages and results of treat-
ments like MSCs can be seen in a broader way.

In this overview, we have presented a generic overview of 
the preclinical and clinical trials conducted in the past based 
on MSC sources. This highlights the dire need to move for-
ward with the translation of MSCs into human clinical trials 
for DKD. These animal models provide sufficient efficacy 
results and lay the foundation for investigating the role of 
MSCs in human subjects with DKD. Moreover, recently 
six clinical trials have been listed as “ongoing,” with the 
National Library of Medicine (NLM) listed in Table 2.

Potential biomarkers for monitoring MSCs 
effect in DKD progression

Effective translation of cellular therapies like MSCs for diabe-
tes and its complications in human subjects needs the identi-
fication of measurable biomarkers or factors that can serve as 
predictors or early indicators of favorable therapeutic response. 
Increased urine albumin excretion is a critical marker for pro-
gressive DKD risk, but its utility as a surrogate for future CKD/
ESRD risk in clinical trials is uncertain [154]. Therefore, iden-
tifying potential biomarkers for monitoring MSC’s impact on 

DKD progression is crucial for successful therapeutic out-
comes. Researchers have been investigating individual bio-
markers or panels of biomarkers linked to an evolving under-
standing of the pathophysiology of DKD. Pro-inflammatory 
cytokines, including TNF-α, IL-6, IL-1β, and MCP-1, have 
emerged as possible indicators of DKD risk and severity. Mul-
tiple studies have reported elevated serum and urine TNF-α 
levels in individuals with DM in comparison to healthy con-
trols, which may correlate with albuminuria status and renal 
function. In vivo models examining MSC therapy’s impact 
on renal function in rats with DKD have shown a decrease 
in TNF-α levels. Soluble forms of TNF-α receptors, sTNFR1 
and sTNFR2, may also be potential indicators of DKD sever-
ity [155]. While the clinical significance of these biomarkers 
as predictors of DKD progression and complications has not 
been definitively established, they could potentially serve as 
biomarkers of the anti-inflammatory effects of MSCs. Further 
research is necessary to validate their clinical usefulness in 
predicting DKD progression and response to MSC therapy. 
Table 3 lists emerging biomarkers in DKD that may offer 
insights into the mechanisms of MSC action in animal and 
human models of the disease. As a result, measuring the levels 
of these cytokines in the blood or urine of DKD patients before 
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and after MSC therapy may serve as a promising biomarker for 
assessing the effectiveness of the treatment.

Human clinical trials using MSCs for DKD

MSC therapy for DKD or other causes of CKD has only 
recently been started in clinical trials, and research is still in 
its infancy. Only a few clinical trials of MSC therapy in DKD 
and four additional trials in nondiabetic CKD were found after 
searching the three major clinical trial registries: WHO Inter-
national Clinical Trials Registry (www.​who.​int/​ictrp/​en/), EU 
Clinical Trials Register (www.​clini​caltr​ialsr​egist​er.​eu/), and 
US National Institutes of Health ClinicalTrials.gov (www.​clini​
caltr​ials.​gov). Clinical researchers are currently studying the 
regenerative and clinical role of MSCs in this illness. Numer-
ous animal and in vitro studies have suggested that MSC-based 
therapy holds great potential for treating DKD. The outcomes 
of these clinical trials provide crucial information, and Table 2 
lists the research foundations for the subsequent clinical studies 
(completed and in the process trials).

A prospective randomized controlled experiment 
specifying the double-blindness, dose-escalating, sequen-
tial (NCT01843387) finished in 2016 [152] was the first 
clinical trial. The effectiveness and adverse events were 
tracked in 30 randomly assigned individuals to receive 
their assigned arm of mesenchymal precursor cells (MPC) 
or a placebo.

The second clinical trial, i.e., The Novel Stromal Cell 
Therapy for Diabetic Kidney Disease (NEPHSTROM), a 
phase 1b/2a trial, has been performed at three European 
sites (NCT02585622). The brief summary of this study is 
described below. Table 4 displays the primary characteristics 
for both clinical trials.

1st clinical study using MSCs for DKD

This is the first double-blind with a control group (placebo) 
trial using allogeneic BM-MSCs in patients with kidney 
handicaps achieved by T2DM. The assigned treatment dose 
was administered intravenously (IV) starting the day follow-
ing the pre-procedure diagnostics. Throughout the 60-week 
study, patients, researchers, and sponsors were kept in the 
dark regarding the therapy allocation. Immature BM-MSCs 
from a healthy paid donor who had been immunoselected 
with rexlemestrocel-L were retrieved. The primary goal was 
to overview the opportunity of immunological hypersensi-
tivity after a singular administration of rexlemestrocel-L 
concerning extreme and determined safety. Regardless of 
the way the trial was not controlled for effectiveness, the 
researchers observed a relationship between isotope and 
Cr-based assessment at 12 weeks after an implantation pro-
cedure in patients with diabetic nephropathy. They chose to 
focus on the 12-week timepoint because previous studies 
have shown similar results at this stage in the early phase of 
the disease. The study measured changes in HbA1c, fasting 
plasma glucose, and insulin levels over time. The results 
show that these levels did not change significantly after some 
time. The study population had varying levels of hypergly-
cemia, with HbA1c ranging from 5.1 to 11.2%. The use of 
diabetes medications also varied among the study popula-
tion: 20% were taking insulin, 20% were taking different 
oral solutions, 20% were taking both oral and insulin, and 
17% were managing their diabetes only through diet. Addi-
tionally, 23.3% of the study population took only an oral 
medication, typically a sulfonylurea or biguanide. The study 
also mentions that the experts were permitted to amend the 
type 2 diabetes treatment for each subject as deemed appro-
priate during the study. The study found that the imbue-
ments (infusions of the therapy) had positive outcomes and 

Table 2   Completed and in-progress clinical studies using MSC-based treatment for DKD

NLM National Library of Medicine, MSC mesenchymal stem cells, BM-MPC bone marrow mesenchymal precursor cells, UC umbilical cord, WJ 
Wharton jelly, AD-MSC adipose-derived MSC

Completed Registered with NLM

Clinical 
trial ID

NCT01843387 NCT02585622 NCT02585622 NCT04216849 NCT03288571 NCT03840343 NCT04125329 NCT04562025

Phase I Ib/IIa I, II I, II I, II I Early phase I N/A
No. of 

subjects
30 14 48 54 20 30 15 38

Route IV IV IV IV Renal parenchyma Intra-arterial 
delivery (single 
kidney)

Peripheral IV 
injection

IV

MSCs type BM-MPC ORBCEL-M BM-MSCs UC-MSCs UC WJ-MSC AD-MSCs UC-MSCs UC-MSCs
Dose and 

fre-
quency

1 dose: 150, 
300 × 106 cells

80 × 106 cells 1 dose: 80, 160, 
240 × 106 cells

5 doses: 1.5 × 106 
cells/kg

3 doses: 3 ml/
kidney

2 doses: 2.5, 
5 × 105 cells/kg

3 doses: 1 × 106 
cells/kg

3 doses: 1 × 106 
cells

Trial status COMPLETED COMPLETED Recruiting Unknown Unknown Recruiting Recruiting N/A

http://www.who.int/ictrp/en/
http://www.clinicaltrialsregister.eu/
http://www.clinicaltrials.gov
http://www.clinicaltrials.gov
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that the safety profile was similar for each treatment group. 
The researchers also evaluated potential risks associated 
with allogeneic cell therapy, such as allergic reactions or 
immunogenic reactions to human antigens from the cells. 
However, prior to infusion, there was no cross-matching 
between donor and recipient cells, and the evaluation of 
antibodies to the donor HLA did not prevent subjects from 
participating. The study also found that none of the patients 
developed antibodies to the donor HLA, and there was no 
clinically substantial increase in their % panel reactive anti-
bodies, which are markers of an immune response. Overall, 
the study suggests that rexlemestrocel-L has an “immune 
tolerant profile,” meaning that it is not likely to trigger an 
immune response. However, it is important to note that this 
study is just one piece of evidence, and further research is 
necessary to fully evaluate the safety and efficacy of rex-
lemestrocel-L and other allogeneic cell therapies.

Constraints in a first clinical trial

There are a few constraints in the clinical trials performed 
by [152]. First, the study size failed to recognize measurably 
massive changes in renal capability. Moreover, the chance 
of occurring type 1 errors cannot be precluded considering 
various exploratory measurable examinations without con-
sidering assortment. Moreover, regardless of whether a first-
in-human review is fitting, the small cohort size (N = 30) 
cannot preclude more extraordinary well-being events that 
might be found more than 60 weeks following solitary 
implantation. Second, the study time period of 3 months to 
examine the adverse events of a single intervention with a 

48-week follow-up time frame is not enough to predicate 
the disease variability and progression scale. Patients with 
a recent history of rapid progression of their chronic kidney 
disease may be more likely to see the benefits of treatment 
over a short period of time, compared to patients whose dis-
ease has not progressed as quickly. Third, a major limitation 
is that the high prevalence of albumin creatinine ratio (ACR) 
levels between 21 and 3000 mg g−1 in some patients made it 
difficult to evaluate changes within both groups within these 
boundaries. It also suggests that choosing subjects with a 
specific range of standard proteinuria would be more ben-
eficial. Additionally, the study notes that because of the vari-
ability within subjects and the awareness of ongoing tests, 
primarily estimated inflammatory cytokines would likely 
require more subjects per group to detect significant changes 
and treatment differences over time. Finally, because of 
concerns about radiation exposure, additional isotopically 
eGFR assessments beyond 3 months (12 weeks) were not 
performed to support the eGFR outcomes. GFR can be 
misjudged or underestimated using serum creatinine-based 
eGFR calculations. There is a dire clinical need for devel-
oping new medications to improve renal function. It sug-
gests that extensive research is needed to examine diabetic 
nephropathy, through longer and more adequately controlled 
studies, including occasional dosing, to evaluate the durabil-
ity of the treatment. This will help determine the safety and 
potential resistance of allogeneic mesenchymal precursor 
cells and the possible efficacy signal of rexlemestrocel-L 
compared to placebo treatment. Aerially, it is difficult to 
reach any conclusion from this trial and the potential for 
MSC therapy in DKD remains elusive.

Table 3   Potential biomarker for DKD progression

TNF-α tumor necrosis factor alpha, DM diabetes mellitus, DKD diabetic kidney disease, TNFR1+2 TNF receptor 1 and TNF receptor 2, CKD3 
chronic kidney disease stage 3, ESRD end-stage renal disease, NGAL neutrophil gelatinase-associated lipocalin, FGF-23 fibroblast growth factor 
23, FGF-21 fibroblast growth factor 21, eGFR estimated glomerular filtration rate, KIM-1 kidney injury molecule 1, IL-6 interleukin 6, MPCs 
mesenchymal precursor cells, ARB angiotensin receptor blocker

Source Biomarker Key outcomes Ref

Serum + urine
(Individual biomarker)

TNF-α Progression of albuminuria in DKD and DM [156]
TNFR1 + 2 Predictive elevation of CKD3 T1DM and ESRD in T2DM [157]
Adiponectin Progression of macroalbuminuria and ESRD [158]
NGAL Progression of albuminuria [159]
KIM-1 Indicator of reduced eGFR in normo-albuminuria [160]

Serum FGF-23 Progression of macro-albuminuria [161]
FGF-21 Indicator of reduced eGFR in normo-albuminuria [162]
IL-6 Association between baseline eGFR levels and the effect of bone mar-

row mesenchymal progenitor cells (MPCs) on eGFR stabilization in 
phase I/II clinical trials

[120]

Serum, urine
(Panel biomarker)

Peptide and metabolite panels Increased in DKD with progression in albuminuria [163]
Candidate biomarker panel Indicator of progression from CKD3 [164]
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2nd clinical trial (NEPHROSTROM)

In the first cohort of the NEPHSTROM study, a phase 1b/2a 
clinical trial, the safety and tolerability of a single intravenous 
infusion of ORBCEL-M in patients with type 2 diabetes and 
progressive diabetic kidney disease (DKD) were explored. The 
intervention was well tolerated, with only one placebo-treated 
patient experiencing a quickly resolved infusion reaction. 
Importantly, the deaths of two ORBCEL-M recipients during 
the follow-up period were determined to be unrelated to the 
trial investigational product, emphasizing its acceptable safety 
profile. These events occurred at longer intervals following 
cell administration, and other medical comorbidities associ-
ated with type 2 diabetes and DKD were identified as the likely 
causal factors. Addressing theoretical concerns regarding the 
potential for transformed cells to give rise to tumors in recipi-
ents, the study highlighted that while murine MSC has demon-
strated malignant transformation, there have been no reports of 
such events with human MSC-based therapies. Furthermore, 
post-mortem examinations of patients who had received alloge-
neic MSC for various conditions found no evidence of ectopic 
tissue formation or malignant tumors of MSC origin.

The study’s clinical efficacy findings revealed a significant 
reduction in the rate of decline in estimated glomerular filtra-
tion rate (eGFR) in the ORBCEL-M group compared to the 
placebo group, particularly when assessed using the CKD-EPI 
and MDRD equations. However, the measured GFR (mGFR) 
did not exhibit a significant difference between the groups. 
These results indicate the potential reno-protective effects of 
ORBCEL-M. The study also delved into the immunomodula-
tory effects of MSC, emphasizing their role in mediating thera-
peutic benefits. Recipients of ORBCEL-M displayed a sustained 
immunomodulatory and anti-inflammatory effect, resulting in 
specific changes in cell profiles. These observations suggest 
that ORBCEL-M could modulate aspects of progressive DKD 
through its influence on immune and inflammatory responses.

Constraints in the 2nd clinical trial

Despite these positive findings, the study acknowledged sev-
eral limitations, including the small sample size, the relatively 
short 18-month duration, and the emergence of new drug 
classes for DKD since the study’s initiation. Future research 
will need to address these limitations and explore the clinical 
potential of ORBCEL-M in larger and longer phase 2b studies.

Autologous and allogeneic MSC treatments 
for other renal pathologies

As of March 2023, a search on “ClinicalTrials.gov” with 
the keywords “kidney” and “mesenchymal stem cells” was 
performed. The “completed” studies filter showed us eight 

studies. Among those studies, we have found one autologous 
and one allogenic study which utilized MSCs to treat CKD 
and lupus nephritis. A phase I (NCT02195323) autologous 
trial was designed to measure the tolerability and safety of 
BM-MSCs treatment in subjects with CKD. This trial was 
performed as a single arm at one center. The eligible CKD 
subjects (n = 7) were evaluated for an 18-month follow-up 
period. The investigational medicinal product, i.e., autolo-
gous Bone marrow-derived MSCs, were administered via 
the intravenous route (2 × 106 cells/kg). The primary out-
come measure of this investigation was safety which was 
analyzed with the count and experiencing adverse reac-
tions. The secondary focus point was to lessen the ratio of 
eGFR. The renal histology of subjects during the follow-
up time frame was compared from baseline, 1, 3, 6, 12, 
and 18 months. No treatment-related adverse events were 
observed during the experimentation phase. In addition, 
after the 18 months follow up, no statistical significance was 
observed in eGFR (p = 0.10) and SCr (p = 0.24) compared to 
baseline. In conclusion, subjects with CKD showed a safety 
profile and tolerability in the one-dose administration of 
autologous BM-MSCs [165]. Another phase I allogenic, 
interventional, non-randomized with parallel assignment 
trial (NCT04318600) was conducted to assess the safety, tol-
erability, and effectiveness profile of hA-MSCs. The primary 
trial endpoints were studied in patients with lupus nephritis. 
hA-MSCs were administered via peripheral IV to 11 lupus 
nephritis (LN) subjects with LN type II, III, or IV. They used 
1 × 106 cells/kg for the infusion, once each month for three 
times. Similarly, five LN subjects received a placebo (control 
group). All subjects were not administered IV corticosteroid 
pulse treatment, but they were permitted to intake oral cor-
ticosteroids and IV cyclophosphamide, dietary mycopheno-
late mofetil, tacrolimus, and leflunomide. The safety profile 
was analyzed by the number and severity of adverse reac-
tions. The eGFR, 24-h proteinuria deviations and SLEDAI 
score were also observed at baseline and post-treatment for 
60 weeks [166].

Clinical trials for DKD have limitations

There has been an extreme absence of human information 
since just two clinical trials. There was a ton of variety 
and predisposition in animal tests, which made the ends 
uncertain. Since the exploratory animal models had short 
lives, preclinical examination frequently had brief percep-
tion times. The heterogeneity in this meta-examination was 
because of the exploratory models of diabetes (for example, 
animal species, the strategy used to produce diabetes, and 
the kind of diabetes), as well as the MSC therapy (e.g., 
origin, dose, recurrence, and route of administration, and 
time points of infusion about the onset of DKD). Future 
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animal experiments with a standard set of strategies may 
explore different avenues regarding better expectations and 
more prominent examples. More human examinations are 
supposed to be directed from now on if preclinical inves-
tigations show adequate viability and safety for longer 
follow-ups.

Conclusion—Strengths and limitations

The study explores the potential benefits of MSCs in treating 
diabetic kidney disease, which is a significant global health 
problem. The review considers various animal models and 
coordinated interventions that modulate different disease 
pathogenesis factors. The study highlights the paracrine 
mechanisms of MSCs and their ability to slow or reverse 
key pathogenic pathways. The authors suggest that MSC 
infusion in DKD might be viewed as a broad reprogram-
ming of chronic nephrotoxic processes occurring in diabe-
tes, potentially “retuning the clock” of renal pathologies 
in responsive patients. The study also suggests that MSC 
treatment could potentially improve glycemic control and 
advance other diabetic end-organ issues. The review high-
lights the potential for MSC treatment to be used in combi-
nation with lifestyle and pharmacological-based medicines 
for DKD. However, the study is limited to preclinical animal 
models, and the findings may not be generalizable to clinical 
applications in humans. The authors acknowledge the need 
for further research to optimize the use of MSCs and other 
stem/progenitor cell therapies in the treatment of diabetic 
kidney disease. The study highlights the need for patient 
selection criteria and the development/optimization of new 
and existing biomarkers to track DKD progression and MSC 
mechanism of action. The cost-effectiveness of MSC admin-
istration in DKD at different stages of severity is unknown. 
The authors acknowledge that MSC heterogeneity remains to 
be fully explored, and MSC heterogeneity in humans should 
be revealed in use, for instance, in single-cell RNA sequenc-
ing innovation.
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